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The Cloud Native Stack - Docker & Kubernetes

The Problem
A major US logistics firm pursuing a mobile-first digital strategy needed a modern and scalable 
back-end to support its microservices based-architecture to be developed on a public cloud 
subscription and be deployable to both test and production on that cloud .

Among the challenges that needed to be addressed were:

  Automated deployment of cloud network resources, security controls, load balancing, 
  compute and database resources that minimized costs upfront then would quickly scale to 
  meet production workload and security requirements.

  A CI/CD pipeline integration into existing Jenkins and Bitbucket toolsets to support 
  rapid-cycle, test-driven, application development.  

  The development team needed high cost efficiency during early development without 
  reworking the deployment when the application was ready to move to production.

The Solution
After careful analysis, a solution was designed that consisted of:

  Infrastructure as Code deployed with 
  Terraform to stand up Kubernetes with a 
  small number of compute nodes for early 
  development and a PaaS PostgreSQL 
  database service.

  Kubernetes deployment files that define the 
  application containers, load balancer 
  configuration, and quantity making it simple 
  for developers to control application 
  response times -- and balance performance 
  against cost.

  All source code and configuration settings 
  for the entire system are version-controlled; 
  stored in a Git-compatible source-code 
  repository and integrated into the company’s CI/CD toolset.

  A common container management process enabled Developers to use Docker Compose for 
  local development.
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 The Result
  Deployed and operated the development environment at 1/10th the cost of production with 
  no additional investment required to scale to production workload.

  Reuse of deployment code to construct environments that were not originally planned.

  Production containers on workstations sped up development and decreased production 
  defects by enabling functional tests prior to code commit. 


