
�������
����� � � � � � �� � � �� � �� � �

�������
����� � � � � � �� � � �� � �� � �

The Cloud Native Stack - Docker & Kubernetes

The Problem
A major US logistics firm pursuing a mobile-first digital strategy needed a modern and scalable
back-end to support its microservices based-architecture to be developed on a public cloud
subscription and be deployable to both test and production on that cloud .

Among the challenges that needed to be addressed were:

  Automated deployment of cloud network resources, security controls, load balancing,
 compute and database resources that minimized costs upfront then would quickly scale to
 meet production workload and security requirements.

  A CI/CD pipeline integration into existing Jenkins and Bitbucket toolsets to support
 rapid-cycle, test-driven, application development.

  The development team needed high cost efficiency during early development without
 reworking the deployment when the application was ready to move to production.

The Solution
After careful analysis, a solution was designed that consisted of:

  Infrastructure as Code deployed with
 Terraform to stand up Kubernetes with a
 small number of compute nodes for early
 development and a PaaS PostgreSQL
 database service.

  Kubernetes deployment files that define the
 application containers, load balancer
 configuration, and quantity making it simple
 for developers to control application
 response times -- and balance performance
 against cost.

  All source code and configuration settings
 for the entire system are version-controlled;
 stored in a Git-compatible source-code
 repository and integrated into the company’s CI/CD toolset.

  A common container management process enabled Developers to use Docker Compose for
 local development.

��� � � � � �� ����� � �� � � �� � �
 � � � � � �� �
	� �� 	�� � �

��� ��� � � � � ��� ��� �� � � �� � � �� �

ENGAGEMENTS
R

un
M

anage &

N
otify

Notification Pagerduty

D
eploy

Enterprise Platforms

Operating Systems

Compute

Storage

Databases

Identity & Access

Orchestration

TestTesting

M
onitor

Observability Splunk

Security

B
uild

Source Control Azure DevOps

Scripting / Programming

TeamsOffice 365

Teams xMatters e-mail Slack NOC

Cisco

Windows

HPE

EMC

Oracle

AD

Python

Locust

Ansible

Nessus

Nagios

Selenium

Teraform

Powershell

Github

Cisco UCS

Linux
(Alpine)

MS SQL

Pure

Gemalto

G-Suite

Tripwire

SCCM

HP Loadrunner

Saltstack

Java

Gitlab

Dell

Linux(Red Hat)

Postgres

HPE

Vault

ServiceNow

Qualys

AppDynamics

IBM Rational

Puppet

Go

Bitbucket

IBM

Linux(Debian)

MySQL

3PAR

Cyberark

Slack

Carbon Black

Stackdriver

JMeter

Kubernetes
(GKE)

SQL

SVN

Lenovo

FreeBSD

MongoDB

NetApp

Open LDAP
(IDA)

Atlassian

CrowdStrike

Prometheus

JUnit

Custom

Ruby

Artifactory

White Box

Unix

IBM DB2

White Box

SiteMinder

Cloud AWS Azure GCP IBM Digital Ocean On-Premise

�������
����� � � � � � �� � � �� � �� � �

�������
����� � � � � � �� � � �� � �� � �

��� � � � � �� ����� � �� � � �� � �
 � � � � � �� �
	� �� 	�� � �

��� ��� � � � � ��� ��� �� � � �� � � �� �

 The Result
  Deployed and operated the development environment at 1/10th the cost of production with
 no additional investment required to scale to production workload.

  Reuse of deployment code to construct environments that were not originally planned.

  Production containers on workstations sped up development and decreased production
 defects by enabling functional tests prior to code commit.

